Stats 2 Continuous Random Variable Questions

4 (a) A random variable X has probability density function defined by

$$f(x) = \begin{cases} k & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

(i) Show that
$$k = \frac{1}{b-a}$$
. (1 mark)

(ii) Prove, using integration, that
$$E(X) = \frac{1}{2}(a+b)$$
. (4 marks)

(b) The error, X grams, made when a shopkeeper weighs out loose sweets can be modelled by a rectangular distribution with the following probability density function:

$$f(x) = \begin{cases} k & -2 < x < 4 \\ 0 & \text{otherwise} \end{cases}$$

(i) Write down the value of the mean,
$$\mu$$
, of X . (1 mark)

(ii) Evaluate the standard deviation,
$$\sigma$$
, of X . (2 marks)

(iii) Hence find
$$P\left(X < \frac{2-\mu}{\sigma}\right)$$
. (3 marks)

7 Engineering work on the railway network causes an increase in the journey time of commuters travelling into work each morning.

The increase in journey time, T hours, is modelled by a continuous random variable with probability density function

$$f(t) = \begin{cases} 4t(1-t^2) & 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

(a) Show that
$$E(T) = \frac{8}{15}$$
. (3 marks)

- (b) (i) Find the cumulative distribution function, F(t), for $0 \le t \le 1$. (2 marks)
 - (ii) Hence, or otherwise, for a commuter selected at random, find

$$P(mean < T < median) (5 marks)$$

5 (a) The continuous random variable X follows a rectangular distribution with probability density function defined by

$$f(x) = \begin{cases} \frac{1}{b} & 0 \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

- (i) Write down E(X). (1 mark)
- (ii) Prove, using integration, that

$$Var(X) = \frac{1}{12}b^2$$
 (5 marks)

(b) At an athletics meeting, the error, in seconds, made in recording the time taken to complete the $10\,000$ metres race may be modelled by the random variable T, having the probability density function

$$f(t) = \begin{cases} 5 & -0.1 \le t \le 0.1 \\ 0 & \text{otherwise} \end{cases}$$

Calculate P(|T| > 0.02). (3 marks)

7 The continuous random variable X has probability density function defined by

$$f(x) = \begin{cases} \frac{1}{5}(2x+1) & 0 \le x \le 1\\ \frac{1}{15}(4-x)^2 & 1 < x \le 4\\ 0 & \text{otherwise} \end{cases}$$

(a) Sketch the graph of f.

(2 marks)

(b) (i) Show that the cumulative distribution function, F(x), for $0 \le x \le 1$ is

$$F(x) = \frac{1}{5}x(x+1) \tag{3 marks}$$

- (ii) Hence write down the value of $P(X \le 1)$. (1 mark)
- (iii) Find the value of x for which $P(X \ge x) = \frac{17}{20}$. (5 marks)
- (iv) Find the lower quartile of the distribution. (4 marks)

6 The waiting time, *T* minutes, before being served at a local newsagents can be modelled by a continuous random variable with probability density function

$$f(t) = \begin{cases} \frac{3}{8}t^2 & 0 \le t < 1 \\ \frac{1}{16}(t+5) & 1 \le t \le 3 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Sketch the graph of f. (3 marks)
- (b) For a customer selected at random, calculate $P(T \ge 1)$. (2 marks)
- (c) (i) Show that the cumulative distribution function for $1 \le t \le 3$ is given by

$$F(t) = \frac{1}{32}(t^2 + 10t - 7)$$
 (5 marks)

- (ii) Hence find the median waiting time. (4 marks)
- 8 The continuous random variable X has the cumulative distribution function

$$F(x) = \begin{cases} 0 & x \leqslant -4 \\ \frac{x+4}{9} & -4 \leqslant x \leqslant 5 \\ 1 & x \geqslant 5 \end{cases}$$

- (a) Determine the probability density function, f(x), of X. (2 marks)
- (b) Sketch the graph of f. (2 marks)
- (c) Determine P(X>2). (2 marks)
- (d) Evaluate the mean and variance of X. (2 marks)
- 4 Students are each asked to measure the distance between two points to the nearest tenth of a metre.
 - (a) Given that the rounding error, X metres, in these measurements has a rectangular distribution, explain why its probability density function is

$$f(x) = \begin{cases} 10 & -0.05 < x \le 0.05 \\ 0 & \text{otherwise} \end{cases}$$
 (3 marks)

- (b) Calculate P(-0.01 < X < 0.02). (2 marks)
- (c) Find the mean and the standard deviation of X. (2 marks)

 $\mathbf{6}$ The continuous random variable X has the probability density function given by

$$f(x) = \begin{cases} 3x^2 & 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

(a) Determine:

(i)
$$E\left(\frac{1}{X}\right)$$
; (3 marks)

(ii)
$$\operatorname{Var}\left(\frac{1}{X}\right)$$
. (4 marks)

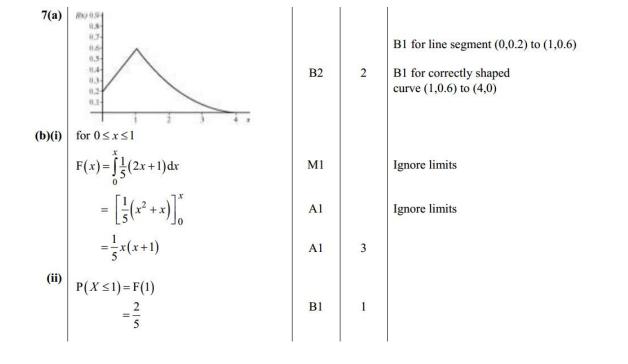
(b) Hence, or otherwise, find the mean and the variance of
$$\left(\frac{5+2X}{X}\right)$$
. (5 marks)

Stats 2 Continuous Random Variable Answers

4(a)(i)	Area = k(b-a) = 1			
(ii)	Area = $k(b-a) = 1$ $\Rightarrow k = \frac{1}{b-a}$ $E(X) = \int_{a}^{b} kx dx$ $= \left(\frac{kx^{2}}{2}\right)\Big _{a}^{b}$	E1 M1	1	AG
	$= \left(\frac{kx^2}{2}\right)_a^b$	A1		
	$= \frac{1}{2}k(b^2 - a^2)$ $= \frac{1}{2} \times \frac{1}{(b-a)} \times (b-a)(a+b)$	M1A1		(factors shown)
	$=\frac{1}{2}(a+b)$		4	AG
(b)(i)	$\mu = 1$	В1	1	
(ii)	$\sigma^2 = \operatorname{Var}(X) = \frac{1}{12}(b-a)^2$ $= \frac{1}{12} \times 6^2$ $= 3$	M1		
	$\therefore \sigma = \sqrt{3}$	A1	2	1.7321
(iii)	$\therefore \sigma = \sqrt{3}$ $P\left(X < \frac{2-\mu}{\sigma}\right) = P\left(X < \frac{1}{\sqrt{3}}\right)$	M1√		(on their μ and σ)
	$=\frac{1}{6} \times 2.577$	M1√		
	= 0.430	A1	3	cao
_	Total		11	

7(a)	$E(T) = \int_{0}^{1} t f(t) dt$				
	$\sum_{i=0}^{\infty} (i) = \int_{0}^{\infty} i \Gamma(i) di$				
	$= \int_{0}^{1} 4t^{2} \left(1 - t^{2}\right) dt$	M1			
	$= \left(\frac{4t^3}{3} - \frac{4t^5}{5}\right)\Big _0^1$	A1			
	$=\frac{4}{3}-\frac{4}{5}$	A1			
	$=\frac{8}{15}$		3	AG	
(b)(i)	$F(t) = P(T \le t) = \int_{0}^{t} f(t) dt$				
	$F(t) = P(T \le t) = \int_{0}^{t} f(t) dt$ $= \int_{0}^{t} 4t (1 - t^{2}) dt$	M1			
	$= \left(2t^2 - t^4\right)\Big _0^t$				
	$=2t^2-t^4$	A 1	2		
(ii)	$P(\mu < T < m) = F(m) - F(\mu)$ $\downarrow \downarrow$	M1			
	F(m) = 0.5	B1			
	$F(\mu) = F\left(\frac{8}{15}\right) = 0.4880$	В1			
	$P(\mu < T < m) = 0.5 - 0.4880$	M 1√		0.5 – their $F(\mu)$	
	= 0.012	A1	5		
	Total		10		_

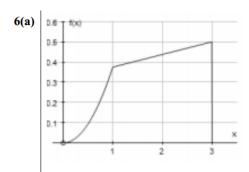
5(a)(i)	$E(X) = \frac{1}{2}b$	B1	1	
	2			
(ii)	$E(X^2) = \int_0^b \frac{1}{b} x^2 dx$	M1		
	$E(X) = \frac{1}{2}b$ $E(X^2) = \int_0^b \frac{1}{b} x^2 dx$ $= \frac{1}{b} \left[\frac{x^3}{3} \right]_0^b$	A 1		For correct integration
	$=\frac{1}{b}\left(\frac{b^3}{3}\right)$			
	$=\frac{1}{3}b^2$	A 1		OE
	$\operatorname{Var}(X) = \frac{1}{3}b^2 - \left(\frac{b}{2}\right)^2$	m1		Depending on using integration to get $E(X^2)$
	$= \frac{1}{3}b^2 - \frac{1}{4}b^2$			
	$=\frac{1}{12}b^2$	A1	5	AG
(b)	P(T > 0.02) = 1 - P(-0.02 < T < 0.02)	M1		
	$=1-0.04\times5$	M1		
	= 0.8	A1	3	
l	Total		9	



(iii)
$$P(X \ge x) = \frac{17}{20} \implies F(x) = \frac{3}{20}$$
 M1
$$\frac{1}{5}x(x+1) = \frac{3}{20}$$
 m1
$$x(x+1) = \frac{3}{4}$$
 A1
$$\left(x - \frac{1}{2}\right)\left(x + \frac{3}{2}\right) = 0$$
 m1 Any valid method attempted
$$x = \frac{1}{2}$$
 A1 5 CAO (iv) Since $F(1) = 0.4$, q lies in $0 \le r \le 1$
$$F(q) = \frac{1}{5}(q^2 + q) = 0.25$$
 M1
$$\Rightarrow q^2 + q = 1.25$$

$$q^2 + q - 1.25 = 0$$
 A1
$$\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$$
 m1
$$q = \frac{1}{2}(\sqrt{6} - 1) \quad (q > 0)$$
 A1 4 AWFW $(0.724 \text{ to } 0.725)$

Total

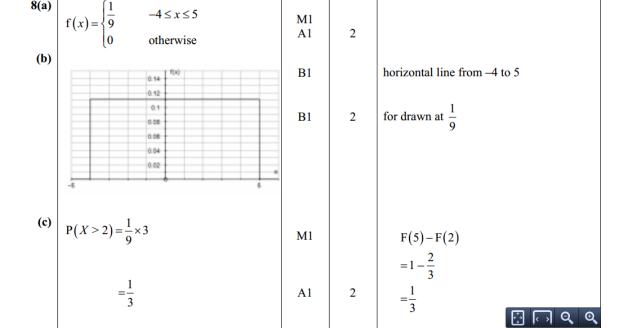


(b)
$$P(T \ge 1) = \frac{1}{2} \times \frac{7}{8} \times 2 = \frac{7}{8}$$

B1 B1 B1	3	for curve for line for axes

15

6(c)(i)	For $1 \le t \le 3$			
	$\int_{1}^{t} \frac{1}{16} (t+5) dt = \left[\frac{1}{32} t^{2} + \frac{5}{16} t \right]_{1}^{t}$	M1A1		
	$F(1) = \frac{1}{8}$	B1		
	$F(t) = \frac{1}{8} + \frac{1}{32}t^2 + \frac{5}{16}t - \frac{11}{32}$	M1		Use of: $F(t) = F(1) + \int_{1}^{t} \frac{1}{16}(t+5) dt$
	$F(t) = \frac{1}{32} (t^2 + 10t - 7)$	A1	5	AG
	Alternative:			
	$\int \frac{1}{16} (t+5) dt$ $= \frac{1}{16} \left(\frac{1}{2} t^2 + 5t + c \right)$	(M1) (A1)		
	$F(1) = \frac{1}{8}$	(B1)		
	$\Rightarrow c = -3.5$	(M1)		
	$F(t) = \frac{1}{32} (t^2 + 10t - 7)$	(A1)		
(ii)	$\frac{1}{32}(m^2+10m-7)=0.5$	M1		
	$m^2 + 10m - 23 = 0$	A1		
	$m = \frac{-10 \pm \sqrt{192}}{2} = -5 \pm \sqrt{48}$	m1		(or any valid method)
	$=-5\pm4\sqrt{3}$			
	(m>0)	A1	4	(1.9282)
	$m = 4\sqrt{3} - 5 = 1.93$			(1.9202)
	Tota	al	14	



	Variance = $\frac{1}{12} \times 81$ = 6.75	B1 B1	2 8	
(d)	$Mean = \frac{1}{}$	D1		

4(a) For a Rectangular Distribution
$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

$$(-0.05, 0.05) \Rightarrow \qquad B1 \qquad (explain error \pm 0.05)$$

$$\frac{1}{b-a} = \frac{1}{0.05 - (-0.05)} = \frac{1}{0.1} = 10 \qquad M1 \\ A1 \qquad 3 \qquad (Area = 10 \times 0.1 = 1)$$
(b) $P(-0.01 < X < 0.02) = 0.03 \times 10 = 0.3 \qquad M1 \\ A1 \qquad 2 \qquad (C) \qquad Mean = 0 \qquad B1 \qquad CAO \\ Standard deviation = 0.0289 \qquad B1 \qquad 2 \qquad \frac{1}{20\sqrt{3}} \text{ OE}$